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1

Instructions for running case studies using
provided scripts

1.1 Set up: R

� Open up R
� Change your working directory to the folder MSSM_Workshop (File: change

dir...).
� Type in dir() and you should see a list of the workshop files
� If you haven’t already, install the packages MASS, date, maps, and mvtnorm.

You only need to install once. If you are online, go to Packages: Install
package(s).... It will then ask you to pick a local mirror; Next, scroll
down to each package and install. If you are not online, then ask one of
the instructors; they have the packages on a memory stick.

� Type in source("KalmanEM.r") at the R command line (the >). Now you
should be ready.

1.2 R pointers when doing case studies

� Each case study comes with an associated script file: Case_Study_#.r
with the code you need to do the basic analyses in the worksheets. It also
contains pointers for doing extensions of the basic analyses.

� With the script open (File: open), you can select the bits of code to run,
right-click (Windows), and select “Run selection”. You can also chose “Run
all” from the Edit menu.

� Use ?fun to get information on a function (replace fun with the name of
a function).

� Use help.search("this that") to do a search for functions with key-
words ‘this’ and ‘that’.

� If you want to save figures, you can right-click over the figure and copy as
metafile or bitmap and paste into a document (like Word or Powerpoint
or whatever).
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1.3 Symbols reminders

A – Matrix of biases for the observation model. Individual elements are Ai.
Et – The process errors. They are Normal(0,Q).
ηt – The observation errors. For this workshop, we assume they are Normal(0,R).
η2

j and ηj – The measurement error variance and sd for observation time series
j. We drop the j, when the same variance is shared across all observation
time series.

Q – Variance-covariance matrix of process errors (Et). Variances are on the
diagonal and termed σ2

i .
R – Variance-covariance matrix of observation errors (ηt). Variances are on

the diagonal and termed η2
i .

σ2
i and σi – The process variance and sd for subpopulation process i. We drop

the i, when the same variance is shared across all subpopulations
U – Matrix of growth rates (population models) or drift rates (movement);

ui are the elements of U.
Xt – Matrix of the subpopulation processes at time t. Individual subpopula-

tion processes are termed xt.
xt – An individual subpopulation process at time t. In a univariate state-space

model or when there is only one state process, only xt appears.
Yt – Matrix of the observations at time t. Individual observations are termed

yt.
yt – An individual observation at time t. In a univariate state-space model,

only yt appears. processes.

1.4 Case Study Guide

1.4.1 First write down (on paper) the matrix form for Z, U, Q,
and R.

� n is the number of observation time series. You don’t control this. It is
determined by the number of observation time series (columns of data).

� m is the number of subpopulations. You specify this.
� Z is n rows by m columns. It is 0s and 1s and specifies which observation

time series (row) is associated with which subpopulation (column).
� U is m rows by 1 column. Each row i is the u for subpopulation i; show

which are shared.
� Q is m rows by m columns. The diagonal is the process variance (σ2

i ) for
each subpopulation i; shows which are shared.

� R is n rows by n columns. The diagonal is the non-process or observation
variances (η2

j ) for each observation time series j; show which are shared.
� A Don’t worry about A; KalmanEM controls that.
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1.4.2 Translate the Z, U, Q, and R forms into KalmanEM arguments

� Z is specified by whichPop. It has n elements (one for each observation
time series) and specifies which observation time series belongs to which
subpopulation (there are m and they are numbered 1, 2, 3, . . . ,m). Every
subpopulation must have at least 1 observation time series.

� U is specified by U.groups. It is a vector with m elements. It specifies
which u are different.

� Q is specified by Q.groups and varcov.Q. Q.groups is a vector with m
elements. varcov.Q is text in quotes (“diagonal”,“equalvarcov”, or “uncon-
strained”)

� R is specified by R.groups and varcov.R. Q.groups is a vector with n
elements. varcov.R is text in quotes (“diagonal”,“equalvarcov”, or “uncon-
strained”)

1.5 KalmanEM tips

� The output from KalmanEM tells you the structure of the multivariate state-
space model (MSSM) that it fit (so you can check your specifications) and
the number of iterations required versus max.iter. If you reached the
maximum, re run with max.iter set higher.

� If you misspecify the model, KalmanEM post an error that should give you
an idea of the problem. Remember, the number of columns in your data
is n and the maximum number in whichPop is m.

� Running KalmanEM with no arguments except your data (KalmanEM(dat))
will fit an unconstrained MSSM with m = n and a diagonal R matrix.
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Case Study 1: Count-based PVA for data with
observation error

2.1 The Problem

Estimates of extinction and quasi-extinction risk are an important risk met-
ric used in the management and conservation of endangered and threatened
species. By necessity, these estimates are based on data that contain both vari-
ability due to real year-to-year changes in the population growth rate (process
errors) and variability in the relationship between the true population size and
the actual count (observation errors). Classic approaches to extinction risk
assume the data have only process error, i.e. no observation error. In reality,
observation error is ubiquitous both because of the sampling variability and
also because of year-to-year (and day-to-day) variability in sightability.

In this case study, we are use a Kalman filter to fit a univariate (meaning
one time series) state-space model to count data for a population. We will
compute the extinction risk metrics given in Dennis et al. (1991), however
instead of using a process-error only model (as is done in the original paper),
we use a model with both process and observation error. The risk metrics
and their interpretations are the same as in Dennis et al. (1991). The only
real difference is how we compute σ2, the process error variance. However this
difference has a large effect on our risk estimates, as you will see.

In this case study, we use a density-independent model. Density-independence
is often a reasonable assumption when doing a PVA because we do such cal-
culations for at-risk populations that are either declining or that are well
below historical levels (and presumably carrying capacity). In an actual PVA,
it is necessary to justify this assumption and if there is reason to doubt the
assumption, one tests for density-dependence (Taper and Dennis, 1994) and
does sensitivity analyses using state-space models with density-dependence
(Dennis et al., 2006).

The univariate model is written:

xt = xt−1 + u+ et where et ∼ Norm(0, σ2) (2.1)
yt = xt + εt where εt ∼ Norm(0, η2) (2.2)
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where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R (because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices).

2.2 Simulated data with process and observation error

We’ll start by using simulated data to see the difference between data and
estimates from a model with process error only versus a model that also
includes observation error. For our simulated data, we’ll used a decline of
5% per year, process variability of 0.01 (typical for big mammals), and a
observation variability of 0.05 (which is a bit on the high end). We’ll randomly
set 10% of the values as missing. Here’s the code:

Set things up.

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmissing = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance (~1100 individuals)

years = seq(1:nYr) # sequence 1 to nYr

x = rep(NA,nYr) # replicate NA nYr times

y = rep(NA,nYr)

First generate the population sizes using equation 2.1:

x[1]=init

for(t in 2:nYr)

x[t] = x[t-1]+ sim.u + rnorm(1, mean=0, sd=sqrt(sim.Q))

Add observation error and missing values to generate the observed data using
equation 2.2:

for(t in 1:nYr)

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R))

missYears =

sample(years[2:(nYr-1)],floor(fracmissing*nYr),replace = F)

y[missYears]=-99

Now let’s look at the simulated data. Stochastic population trajectories
show much variation, so it is best to look at a few at once. In figure 2.1, nine
simulations from the identical parameters (above) are shown.
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Fig. 2.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Exercise 1

A good way to get a feel for reasonable σ2 values is to generate simulated
data and look at the time series. As a biologist, you probably have a pretty
good idea of what kind of year-to-year population changes are reasonable for
your species. For example for most of the mammalian species I work with, the
maximum population yearly increase would be around 50% (the population
could go from 1000 to 1500 in one year), but some of the fish species could
easily double or even triple in a really good year. Your observed data may
bounce around a lot for many different reasons having to do with sightability,
sampling error, age-structure, etc., but the underlying population trajectory
is constrained by the kinds of year-to-year changes in population size that
are biologically possible for your species. σ2 describes those true population
changes.

Run the Exercise 1 code (in Case_Study_1.r) several times using different
parameter values to get a feel for how different the time series can look based
on identical parameter values. Typical vertebrate σ2 values are 0.002 to 0.02,
and typical η2 values are 0.005 to 0.1. A u of -0.01 translates to an average 1%
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per year decline and a u of -0.1 translates to an average 10% per year decline
(approximately).

2.3 Parameter estimation

2.3.1 Maximum-likelihood estimates for a model with observation
error

We put the simulated data through the Kalman-EM algorithm in order to
estimate the parameters, u, σ2, and η2, and population sizes. These are the
estimates using a model with process and observation variability. The function
call is kem = KalmanEM(data), where data is a vector of logged (base e)
counts with missing values denoted by -99. After this call, the ML parameter
estimates are kem$U, kem$Q and kem$R. There are numerous other outputs
from the KalmanEM function. To get a list of the outputs type in names(kem).
Note that kem is just a name; I could have called the output foo. Here’s some
code to fit to the simulated time series. The silent=T keeps the algorithm
from outputting some model information that we won’t need until Case Study
2.

kem = KalmanEM(y,silent=T)

Let’s look at the parameter estimates for the nine simulated time series in
figure 2.1 to get a feel for the variation. I used the KalmanEM function on each
time series to produce parameter estimate for each simulation. The estimates
are followed by the mean (over the nine simulations) and the true values:

kem.params

kem.U kem.Q kem.R
sim 1 -0.01616165 0.0152894742 0.04940696
sim 2 -0.04131631 0.0008442845 0.06965247
sim 3 -0.04785627 0.0009932629 0.05106351
sim 4 -0.02104032 0.0265155965 0.03500475
sim 5 -0.04934044 0.0006964074 0.06492995
sim 6 -0.04722872 0.0069335675 0.03282802
sim 7 -0.06114349 0.0004053795 0.03911615
sim 8 -0.07147773 0.0078744489 0.03702980
sim 9 -0.05901010 0.0075138430 0.04600571
mean sim -0.04606389 0.0074518071 0.04722637
true -0.05000000 0.0100000000 0.05000000

As expected, the estimate parameters do not exactly match the true parame-
ters, but the average should be fairly close (although 9 simulations is a small
sample size). Also note that although we don’t get u quite right, our estimates
are usually negative. Thus our estimates usually indicate declining dynamics.
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The Kalman-EM algorithm also gives an estimate of the true population
size with observation error removed. This is in kem$states. Figure 2.2 shows
the KalmanEM estimated true states of the population over time as a solid
line. Note that the solid line is considerably closer to the actual true states
(dashed line) than the observations. On the other hand with certain datasets,
the Kalman filter can get it quite wrong as well!
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Fig. 2.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the Kalman-EM algorithm

2.3.2 Maximum-likelihood estimates for a model with no
observation error

We used the Kalman-EM algorithm to estimate the mean population rate u
and process variability σ2 under the assumption that the count data have
observation error. However, the classic approach to this problem, referred to
as the “Dennis model” (Dennis et al., 1991), uses a model that assumes the
data have no observation error; all the variability in the data is assumed to
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result from process error. This approach works fine if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in (Dennis et al., 1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years = years[y!=-99] # the non missing years

den.y = y[y!=-99] # the non missing counts

den.n.y = length(den.years)

delta.pop = rep(NA, den.n.y-1 ) # population transitions

tau = rep(NA, den.n.y-1 ) # step sizes

for (i in 2:den.n.y ){

delta.pop[i-1] = den.y[i] - den.y[i-1]

tau[i-1] = den.years[i]-den.years[i-1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 2.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

# note: the "-1" specifies no intercept

den91.u = den91$coefficients

den91.Q = var(resid(den91))

Here are the parameters values for the data in figure 2.2 using the process-
error only model:

den91.params

den91.U den91.Q
sim 1 -0.01781257 0.11853167
sim 2 -0.07421083 0.15309662
sim 3 -0.06988188 0.11837037
sim 4 -0.02988104 0.10035714
sim 5 -0.04549535 0.12155298
sim 6 -0.05568473 0.07500778
sim 7 -0.08119574 0.10425296
sim 8 -0.07582527 0.08848537
sim 9 -0.07849467 0.09951930
mean sim -0.05872023 0.10879713
true -0.05000000 0.01000000

Notice that the u estimates are similar to those from the Kalman-EM algo-
rithm, but the σ2 estimate (Q) is much larger. That is because this approach
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Fig. 2.3. The regression of log(Nt+τ )− log(Nt) against τ . The slope is the estimate
of u and the variance of the residuals is the estimate of Q.

treats all the variance as process variance, so any observation variance in the
data is lumped into process variance (in fact it appears as 2 × the observation
variance).

Exercise 2

The code for exercise 2 (in Case_Study_1.r) generates multiple (nsim) sim-
ulated data sets and then estimates parameter values for each. It compares
the Kalman-EM estimates to the estimates using a process error only model
(i.e. ignoring the observation error). Here is an example of the output from
the code:

kem.U den91.U kem.Q kem.R den91.Q
sim 1 -0.0540 -0.0562 0.021789 0.0266 0.0790
sim 2 -0.0365 -0.0233 0.006976 0.0265 0.0743
sim 3 -0.0237 -0.0543 0.031379 0.0602 0.1604
sim 4 -0.0638 -0.0620 0.010875 0.0526 0.1166
sim 5 -0.0312 -0.0238 0.025014 0.0565 0.1678



12 2 CS1: Count-based PVA for data with observation error

sim 6 -0.0152 -0.0169 0.000509 0.0316 0.0618
sim 7 -0.0542 -0.0683 0.021001 0.0417 0.1115
sim 8 -0.0551 -0.0392 0.001619 0.0632 0.1552
sim 9 -0.0423 -0.0436 0.010969 0.0428 0.1149
mean sim -0.0418 -0.0431 0.014459 0.0446 0.1157
true -0.0500 -0.0500 0.010000 0.0500 0.0100

1. Re-run the parameter estimation on new data sets a few times to see the
performance of the estimates using a state-space model (kem.) versus the
model with no observation error (den91).

2. Alter the observation variance, sim.R in the data generation step in order
to get a feel for performance as observations are further corrupted. What
happens as error is increased?

3. Decrease the number of years of data, nYr and re-run the parameter esti-
mation. What changes?

If you find that the exercise code takes too long to run, reduce the number of
simulations (by reducing nsim in the code).

2.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit
a certain threshold xd within a certain time frame te – if the observed trends
continue’. Under this definition, we can computeΠ(xd, te) using the stochastic
population model (equation 2.1) and our estimate of the parameters of that
model. In practice, the threshold used is not Ne = 1, which would be true
extinction. Often a ‘functional’ extinction threshold will be used (Ne >> 1).
Other times a threshold of ‘a pd fraction of current levels’ is used. The latter
is used because we often have imprecise information about the relationship
between the true population size and what we measure in the field; many
population counts are index counts. In these cases, one must use ‘fractional
declines’ as the threshold. Also, extinction estimates that use an absolute
threshold (like 100 individuals) are quite sensitive to error in the estimate of
true population size. In this workshop, we are going to use fractional declines
as the threshold, specifically pd = 0.1 which means a 90% decline below the
population size at the last census.

Π(xd, te) is typically presented as a curve showing the probabilities of
hitting the threshold (y-axis) over different time horizons (te) on the x-axis.
Extinction probabilities can be computed through Monte Carlo simulations
or analytically using equation 16 in Dennis et al. (1991) (note there is a typo
in equation 16; the last + is supposed to be -). We will use the latter method:

Π(xd, te) = π(u)×Φ
(
−xd + |u|te√

σ2te

)
+exp(2xd|u|/σ2)Φ

(
−xd − |u|te√

σ2te

)
(2.3)
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where xe is the threshold and is defined as xe = log(N0/Ne), where N0 is the
current population estimate and Ne is the threshold. If we are using fractional
declines then xe = log(N0/(pd × N0)) = −log(pd). π(u) is the probability
that the threshold is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and
π(u) = exp(−2uxd/σ

2) if u > 0. Φ() is the cumulative probability distribution
of the standard normal (mean = 0, sd = 1). Here is the R code for that
computation (using a fractional decline threshold):

pd = 0.1 #means a 90 percent decline

tyrs = 1:100

xd = -log(pd)

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q)) #Q=sigma2

for (i in 1:100){

Pi[i] = p.ever * pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

+ exp(2*xd*abs(u)/Q) *

pnorm((-xd - abs(u)* tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 2.4 shows the estimated probabilities of hitting the 90% decline for
the nine 30-year times series simulated with u = −0.05, σ2 = 0.01 and η2 =
0.05. The dashed line shows the estimates using the Kalman-EM parameter
estimates and the solid line shows the estimates using a process-error only
model (the Dennis91 estimates). The circles are the true probabilities. The
difference between the estimates and the true probalities is due to errors in û.
Those errors are due largely to process error – not observation error. As we
saw earlier, by chance population trajectories with a u < 0 will increase, even
over a 30-year period. In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
9 simulations). Note that on average (over 9 simulations), the estimates are
good. If we had averaged over 1000 simulations instead of 9, you would see
that the Kalman-EM line falls on the true line. It is an unbiased predictor.
While that may seem a small consolation if estimates for individual simulations
are all over the map, it is important for correctly specifying our uncertainty
about our estimates. Second, rather than focusing on how the estimates and
true lines match up, see if there are any forecasts that seem better than others.
For example, are 20-year predictions better than 50 and are 100-yr better or
worse. In Exercise 3, you’ll remake this with different u. You’ll discover from
that that populations in the worst shape (smallest u) have better predictions.

Exercise 3

Use the code from exercise 2 to re-create new parameter estimates (if needed).

1. Change sim.R and rerun exercise 2 and then run exercise 3. When are the
estimates using the process-error only model (den91) worse and in what
way are they worse?
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Fig. 2.4. Plot of the true and estimated probability of declining 90% in different
time horizons (the x axis) for nine simulated population time series with observation
error.

2. You might imagine that you should always use a model that assumes
that the data contain observation error, since in practice observations are
never perfect. However, there is a cost to estimating that extra variance
parameter and the cost is a more variable σ2 (Q) estimate. Play with
shortening the time series and decreasing the sim.R values. Are there
situations when the ‘cost’ of the extra parameter is greater than the ‘cost’
of ignoring observation error?

3. How does changing the extinction threshold (pd) change the extinction
probability curves? (Do not remake the data, i.e. don’t rerun exercise 2)

4. How does changing the rate of decline (sim.u) change the estimates of
risk? Rerun exercise 2 using a lower u; this will create a new matrix of
parameter estimates. Then run the exercise 3 code. Do the estimates seem
better of worse for rapidly declining populations?

5. Rerun exercise 2 using fewer number of years (nYr smaller) and increase
fracmissing. Rerun exercise 2 to create the new parameter estimates.
Then run the exercise 3 code. The graphs will start to look peculiar. Why
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do you think it is doing that? Hint: look at the estimated parameters using
params.

2.5 Certain and uncertain regions

From exercise 3, you’ve observed one of the problems with estimates of the
probability of hitting thresholds. Looking over the 9 simulations, your risk es-
timates will be on the true line sometimes and other times they are way off. So
your estimates are variable. Using only the point estimates of the probability
of 90% decline by themselves in a PVA should not be done. At the minimum,
CIs need to be added (next section), but even with CIs, the probability of
hitting declines often doesn’t capture our certainty and uncertainty about our
risk estimates.

From exercise 3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (not hitting
the threshold), while for other time horizons (30, 50 years) the estimates are
all over the map. Put another way, you may be able to say with high confidence
that a 90% decline will NOT occur between years 1 to 20 and that by year 100
it most surely will have occurred. However, between the years 20 and 100, you
are very uncertain about the risk. The point is that you can be certain about
some forecasts while at the same time being uncertain about other forecasts.

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of
the 0-1 range your 95% CI covers. Ellner and Holmes (2008) show such a
figure (their figure 1). Figure 2.5 shows a version of this figure that you can
produce with the function TMUfigure(u= val, N= val, s2p= val). In the
figure, I used u = −0.05 which is a 5% per year decline, N = 25 so 25 years
between the first and last census, and s2p = 0.01. The process variability for
big mammals is typically in the range of 0.002 to 0.02.

Exercise 4

Use the code for exercise 4 (in Case_Study_1.r) to re-create Figure 2.5 and
get a feel for when (what parameter ranges) risk estimates are more certain
and when they are less certain.

par(mfrow=c(1,1))

TMUfigure(N=30, u=-0.05, s2p=0.01)

N are the number of years of data, u is the mean population growth rate, and
s2p is the process variance.
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Fig. 2.5. This figure shows your region of high uncertainty (dark grey). In this
region, the minimum 95% CIs (meaning if you had no observation error) span 80%
of the 0 to 1 probability. That is, you are uncertain if the probability of a specified
decline is close to 0 or close to 1. The green (dots) shows where your upper 95% CIs
does not exceed P=0.05. So you are quite sure the probability of a specified decline
is less than 0.05. The red (dots) shows where your lower 95% CIs is above P=.95. So
you are quite sure the probability is greater than P=0.95. The light grey is between
these two certain/uncertain extremes.

2.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in PVA and it
appears in IUCN Red List criteria. However, as you have seen, there is high
uncertainty associated with such estimates. Part of the problem is that prob-
ability is constrained to 0 to 1, and it is easy to get estimates with CIs that
span 0 to 1. Other metrics of risk, û and the distribution of the time to hit
a threshold (Dennis et al., 1991), don’t have this problem and may be more
informative. Figure 2.6 shows different risk metrics from Dennis et al. (1991)
on a single plot. This figure is generated by the call

riskfigure(datafile)
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The datafile is the name of the data file, with column 1 = years and column
2 = population count. riskfigure() has a number of arguments that can be
passed in to change the default behavior. te is the forecast length (default
is 100 years), threshold is the extinction threshold either as an absolute
number, if absolutethresh=T, or as a fraction of current population count, if
absolutethresh=F. The default is absolutethresh=F and threshold=0.1.
datalogged=T means the data are already logged; this is the default.
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Fig. 2.6. Risk figure using data for the critically endangered African Wild Dog
(data from Ginsberg et al. 1995). This population went extinct after 1992.
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Exercise 5

Use the code for exercise 5 (in Case_Study_1.r) to re-create Figure 2.6. I’ve
included some other data for you to run: prairechicken.txt from the endan-
gered Attwater Praire Chicken, graywhales.txt from Gerber et al. (1999),
and grouse.txt from the Sharptailed Grouse (a species of U.S. federal con-
cern) in Washington State. If you have other textfiles of data, you can run
those too. Just replace the datafile name and ensure that the data are in the
same format as wilddogs.txt.

2.7 Confidence intervals

The figures produced by riskfigure() have confidence (95% and 75%) on the
probabilities in the top right panel. The standard way to produce these CIs is
via parametric bootstrapping. Here are the steps in a parametric bootstrap:

� You estimate u and σ2 and η2

� Then you simulate time series using those estimates and equations 2.1 and
2.2

� Then you re-estimate your parameters from the simulated data (using say
KalmanEM(simdata)

� Repeat for 1000s of time series simulated using your estimated parameters.
This gives you a large set of bootstrapped parameter estimates

� For each bootstrapped parameter set, compute a set of extinction estimates
(you use equation 2.3 and code from exercise 3)

� The α% ranges on those bootstrapped extinction estimates gives you your
α CIs on your probabilities of hitting thresholds

Look at the code in riskfigure.r to see how to do this in R.
For the workshop, producing our parameter estimates by estimating them

from the simulated data would be far too slow. Therefore I used approximate
CIs on the parameters using the inverse of a numerically estimated Hessian
matrix. This uses an estimate of the variance-covariance matrix of the param-
eters from the inverse of a numerically estimated Hessian matrix. The function
riskfigure() has an option you can set CI.method=c("hessian","paramboot","nonparamboot","none")
which tells it how to compute the CIs. For the workshop, I set CI.method="hessian".
Using an estimated Hessian matrix to compute CIs is a handy trick that can
be used for all sorts of maximum-likelihood parameter estimates. Look at the
code in riskfigure() to see how to use the nlme package in R to do this very
easily.

2.8 Other parameter estimation methods

Restricted maximum-likelihood algorithms are also available for state-space
models, both univariate and multivariate (Staples et al., 2004; Hinrichsen,
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2009). REML can give parameter estimates with lower variance than the
Kalman-EM algorithm. Also the REML algorithm is much easier to code than
the Kalman-EM algorithm (see code provided with the cited papers). How-
ever, the algorithms for REML when there are missing values are not currently
available, so you are limited to data with no missing values (at the moment).
Data with cycles, from age-structure or predator-prey interactions, are diffi-
cult to analyze and both REML and Kalman-EM will give poor estimates for
this type of data. The slope method (Holmes, 2001), while more ad-hoc, is ro-
bust to those problems. Holmes et al. (2007) used the slope method in a large
study of data from endangered and threatened species. Ellner and Holmes
(2008) showed that the slope estimates are close to the theoretical minimum
uncertainty. However estimates using the slope method are not easily extended
to multi-site data. If you wish, you can run the slope method on the data in
this case study by using the function slopemethod(logged.data); replace
logged.data with your time series of data. The function will output u, σ2,
and η2. See the reference list on the workshop website for a bibliography of
papers on maximum-likelihood estimation of state-space models for ecological
data.

My research is focused on Kalman-based and REML algorithms because
of they are true maximum-likelihood methods, and the research I do on model
selection requires that. However if I am doing a PVA and have a single time
series with fewer than 25 years of data, I will often use the slope method be-
cause that method is less data-hungry. I am using the Kalman-based methods
in this workshop because they allow one to easily study multi-site data and
we don’t have to worry about lots of missing values. One reason the EM algo-
rithm is popular is that it is quite simple conceptually and if coded correctly,
must increase in likelihood at each iteration. However, the EM algorithm is
slower, sometimes much, much slower, than Newton-based methods. For any
but the simplest model structures with few missing values, we have not had
success getting Newton-based methods to work via the optim function in R.
We have not tried creating a customized Newton method for our problems, in
part because we are trying to write code for general model structures and in
part, because it seemed hard. However, if you need a very fast algorithm, you
should look into the research on Newton methods for state-space models. For
our purposes, the Kalman-EM algorithm is fast enough and it is quite robust
and likely to work on any data students might bring to our workshops.

Bayesians: Bayesian applications using state-space models to analyze pop-
ulation data are also well developed. See the reference list on the website for a
summary of this literature. The MathBio group at Northwest Fisheries Science
Center is actively developing and using Bayesian approaches also. You can find
links to this code and research at my website: http://faculty.washington.edu/eeholmes.
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Case study 2: Combining multi-site and
subpopulation data to estimate trends and
trajectories

3.1 The problem

In this example, we will use multivariate state-space models to combine sur-
veys from multiple sites into one estimate of the average long term population
growth rate and the year-to-year variability in that growth rate. Note this is
not quite the same as estimating the ‘trend’; ‘trend’ often means what popu-
lation change happened, whereas the long-term population growth rate refers
to the underlying population dynamics. We will use as our example a dataset
from harbor seals in the Puget Sound, Washington, USA.

We have five regions where harbor seals were censused from 1978-1999
while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20
years of the data but we do not know what fraction of the population that
each region represents nor do we know the observation-error variance for each
region. Given differences between behaviors of animals in different regions and
the numbers of haul-outs in each region, the observation errors may be quite
different. The regions have had different levels of sampling; the best sampled
region has only 4 years missing while the worst has over half the years missing.

Figure 3.1 shows the data. The numbers on each line denote the different
regions:

1 Str.JF
2 SJ.Islands
3 E.Bays
4 Puget.Snd
5 Hood.Canal

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219
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Fig. 3.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). Each region is an index of the total harbor seal population, but the bias
(the difference between the index and the true population size) for each region is
unknown.

For this example, we will assume that the underlying population process
is a stochastic exponential growth process with rates of increase that were
not changing through 1978-1999. However, we are not sure if all five regions
sample a single “total Puget Sound” population or if there are independent
subpopulations. You are going to estimate the long-term population growth
rate using different assumptions about the population structures (1 big pop-
ulation versus multiple smaller ones) and observation error structures to see
how your assumptions change your estimates.

The data for this case study are stored in a comma-delimited file, Case_Study_2_data.csv
and have already been log transformed. Read the data into R with the follow-
ing commands:

d <- read.csv("Case_Study_2_data.csv",header=TRUE)

years = d[,1] #[,1] means all rows, column 1

dat = d[,2:ncol(d)]

n = ncol(dat)



3.2 First analysis: a single total Puget Sound population 23

The years (years) are in column 1 and the logged data (dat) are in the rest
of the columns. The number of observation time series (n) is the number of
columns in dat. Let’s look at the first few years of data:

print(d[1:4,], digits=3)

Years Str.JF SJ.Islands E.Bays Puget.Snd Hood.Canal
1 1978 6.03 6.75 6.63 5.82 6.6
2 1979 -99.00 -99.00 -99.00 -99.00 -99.0
3 1980 -99.00 -99.00 -99.00 -99.00 -99.0
4 1981 -99.00 -99.00 -99.00 -99.00 -99.0

The -99’s in the data are missing values. The algorithm will ignore those
values when estimating x1:T .

3.2 First analysis: a single total Puget Sound population

The first step in a state-space modeling analysis is to specify the population
structure and how the regions relate to that structure. The general state-space
model is

Xt = BXt−1 + U + Et, where Et ∼ MVN(0,Q) (3.1)
Yt = ZXt + A + ηt, where ηt ∼ MVN(0,R) (3.2)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.

3.2.1 The population process, X, for analysis 1

For our first analysis, we assume that there is one population. When we are
looking at trends over a large geographic region, we might make this assump-
tion if we think animals are moving sufficiently that the whole area (multiple
regions together) acts like a single population. We then write a model of the
population abundance as:

nt = exp(u+ et)nt−1, (3.3)

where nt is the total count in year t, u is the mean population growth rate,
and et is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u+ et. (3.4)

xt = log nt. When there is one effective population, there is one x, there for
Xt is a 1×1 matrix. There is one population growth rate (u) and there is one
process variance (σ2). Thus U and Q are 1× 1 matrices.
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3.2.2 The observation process, Y, for analysis 1

For analysis 1, we assume that all five regional time series are observing this
one population trajectory but they are scaled up or down relative to that
trajectory. In effect, we think that animals are moving around a lot and our
regional samples are some fraction of the population. There is year-to-year
variation in the fraction in each region, just by chance. Notice that under this
analysis, we don’t think the regions represent independent subpopulations but
rather independent observations of one population.

Our model for the data, Yt = ZXt + A + ηt, is written out as:
y1,t

y2,t

y3,t

y4,t

y5,t

 =


A1

A2

A3

A4

A5

+


1
1
1
1
1

xt +


ε1,t

ε2,t

ε3,t

ε4,t

ε5,t

 (3.5)

Each yi is the time series for a different region (the names for the numbered
regions are given on page 2). The A’s are the bias between the regional sample
and the total population. The A’s are scaling (or intercept-like) parameters
that are not important for trend estimation2. We will ignore them 3. We
allow that each region could have a unique observation variance and that
the observation errors are independent between regions. Lastly, we assume
that the observations errors on log(counts) are normal and thus the errors on
(counts) are log-normal.4

We specify independent observation errors with unique variances by εt ∼
MVN(0,R), where

R =


η1,t 0 0 0 0
0 η2,t 0 0 0
0 0 η3,t 0 0
0 0 0 η4,t 0
0 0 0 0 η5,t

 (3.6)

Z is specifying which observation time series, yi,1:T , is associated with which
population trajectory, xj,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population

2 To get rid of the A’s, we scale multiple observation time series against each other;
thus one A will be fixed at 0

3 Estimating the bias between regional indices and the total population is important
for getting an estimate of the total population size. However, the time series
analysis that we are doing for this workshop is not useful for estimating A’s.
Instead one uses some type of mark-recapture data. For trend estimation, the A’s
are not important. The regional observation variance captures increased variance
due to a regional being a smaller sample of th total population.

4 The assumption of normality is not unreasonable since these regional counts are
the sum of counts across multiple haul-outs.
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trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zij = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n× 1.

3.2.3 Set the arguments for KalmanEM for analysis 1

Now that we have specified our state-space model, we set the arguments that
will tell the function KalmanEM the structure of our model. First we need to
tell the KalmanEM function that Z is a column vector of 1s (as in equation 3.5).
We do this using the argument whichPop. whichPop is a 1×n vector where the
i-th element specifies which population trajectory the i-th observation time
series belongs to. Since there is only one population trajectory in analysis 1,
whichPop is just a vector of 5 1’s. Every observation time series is measuring
the first, and only, population trajectory. In later analyses, you’ll see how
whichPop changes when we have subpopulations.

whichPop = c(1,1,1,1,1)

Next we specify that the R variance-covariance matrix only has terms on the
diagonal (the variances) and set the off-diagonals (the covariances) to zero.5

varcov.R = "diagonal"

That’s it. KalmanEM has a number of other arguments we could set, but for
this example, we only need to set these two.

3.2.4 Fit the model for analysis 1 to the data

We will send the data to the function KalmanEM and put the result in
kem1. When we run KalmanEM, it will print information on the structure
of the model it is fitting and how many iterations it took to run. If you
haven’t already, you need to source the KalmanEM function file by typing in
source("KalmanEM.R"). After you have read in the data, type in the following
to fit the model

kem1 = KalmanEM(dat, whichPop=c(1,1,1,1,1), varcov.R="diagonal")

Model Structure is
m: 1 state process(es)
n: 5 observation time series
whichPop: Observation time series assigned to state processes as 1 1 1 1 1
R: Observation errors are uncorrelated and have a diagonal var-cov matrix.
R.groups: Observation variances assigned to groups as 1 2 3 4 5
x00 is treated as fixed but unknown (estimated). V00=0 (but set larger for the EM algorithm. See help file).
Finished in 15 interations. Max.iter was 5000.
5 For the EM function that we wrote for this workshop, the measurement errors

must be uncorrelated if there are missing values in the data.
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The function will output some information about the model structure you are
fitting. kem1 is a list of objects and names(kem1) shows the objects in it (this
is a partial list; if you do it from R, you’ll see the full list but watch out, it is
long):

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "states" "states.se" "A" "B" "Q" "R" "U" "Kt"

kem1$states are the maximum-likelihood estimates of “total harbor seal pop-
ulation” scaled to the first observation data series, and kem1$states.se are
the standard errors on those estimates. To get 95% CIs, use kem1$states +/-
1.96*kem1$states.se. One of the biases, the As, cannot be estimated and
arbitrarily KalmanEM choses A1 = 0, so the population estimate is scaled to the
first observation time series. Since we are only trying to estimate the trend,
u, the unknown bias is unimportant. Figure 3.2 shows a plot of kem1$states
with its 95% CIs over the data. Because kem1$states has been scaled relative
to the first time series, it is on top of that time series.

To get the estimated long term population growth rate, type in

kem1$U

Multiply by 100 to get the percent increase per year. The estimated process
variance is given by

kem1$Q

The log-likelihood of this model is

kem1$loglike

We estimated 1 initial x (t = 0), 1 process variance, 1 U , 4 A’s, and 5
observation variances’s. So K = 12 parameters. The AIC of this model is
−2× loglike+ 2K, which we can show by typing

kem1$AIC

After you do the analysis, add the estimates to the table at the end of this
case study write-up.

3.3 Second analysis: constraining the observation
variances

The variable kem1$R contains the estimates of the observation error variances.
It is a matrix. Here is R from analysis 1:

kem1$R

1:1:1 1:2:1 1:3:1 1:4:1 1:5:1
1:1:1 0.0317712 0.00000000 0.00000000 0.00000000 0.0000000
1:2:1 0.0000000 0.03456110 0.00000000 0.00000000 0.0000000
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Fig. 3.2. Plot of the estimate of “ln total harbor seals in Puget Sound” (minus
the unknown bias for time series 1) against the data. The estimate of the total seal
count has been scaled relative to the first time series. The 95% CIs on the population
estimates are the dashed lines. These are not the CIs on the observations and the
observations (the numbers) should not fall between the CI lines.

1:3:1 0.0000000 0.00000000 0.01358569 0.00000000 0.0000000
1:4:1 0.0000000 0.00000000 0.00000000 0.01191684 0.0000000
1:5:1 0.0000000 0.00000000 0.00000000 0.00000000 0.1985786

Notice that the variances along the diagonal are all different–we estimated 5
unique observation variances. We might be able to improve the fit (relative
to the number of estimated parameters) by assuming that the observation
variance is equal across regions but the errors are independent. This means
we estimate 1 observation variance instead of 5. This is a fairly standard
assumption for data that come from the same survey methodology6.

To impose this constraint, we set the argument R.groups for KalmanEM to

R.groups=c(1,1,1,1,1)

6 This is not a good assumption for these data since the number haul-outs in each
region varies and the regional counts are the sums across all haul-outs in a region.
We’ll see that this is a poor assumption when we look at the AIC values.
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This tells KalmanEM that all the η2’s along the diagonal in R are the same
(the default is R.groups = c(1,2,3,4,5) which tells KalmanEM that all the
η2’s are different). To fit the model for analysis 2 to the data:

kem2 = KalmanEM(dat, whichPop=c(1,1,1,1,1),

varcov.R="diagonal", R.groups=c(1,1,1,1,1))

Model Structure is
m: 1 state process(es)
n: 5 observation time series
whichPop: Observation time series assigned to state processes as 1 1 1 1 1
R: Observation errors are uncorrelated and have a diagonal var-cov matrix.
R.groups: Observation variances assigned to groups as 1 1 1 1 1
x00 is treated as fixed but unknown (estimated). V00=0 (but set larger for the EM algorithm. See help file).
Finished in 15 interations. Max.iter was 5000.

The new parameter estimates and log likelihood for this model are

kem2$U #population growth rate

[,1]
1:1 0.0473425

kem2$Q #process variance

1:1
1:1 0.005454705

kem2$R[1,1] #observation variance

[1] 0.04525910

kem2$loglike #log likelihood

[1] 3.528793

We estimated 1 initial x, 1 process variance, 1 U , 4 A’s, and 1 observation
variance. So K = 8 parameters. The AIC for this new model compared to the
old model with 5 observation variances is:

c(kem1$AIC,kem2$AIC)

[1] -9.238935 8.942415

A smaller AIC means a better model. The difference between the 1 observation
variance versus the unique observation variances is >10, suggesting that the
unique observation variances model is better. Go ahead and type in the R
code. Then add the parameter estimates to the table at the back.

One of the key diagnostics when you are comparing fits from multiple
models, it to examine whether the model is flexible enough to fit the data.
You do this by looking for temporal trends in the the residuals between the
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estimated population states (e.g. kem2$states) and the data. In Fig. 3.3, the
residuals for analysis 2 are shown. Ideally , these residuals should not have a
temporal trend. They should look cloud-like. The fact that the residuals for
analysis 2 have a strong temporal trend is an indication that our 1 population
model is too restrictive for the data7.
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Fig. 3.3. Analysis 2 residuals. The plots of the residuals should not have trends with
time, but they do... This is an indication that the 1 population model is inconsistent
with the data. The code to make this plot is given in the script file for case study 2.

3.4 Third analysis: North and South subpopulations

For the third analysis, we will change our assumption about the structure of
the population. We will assume that there are 2 subpopulations, North and
South, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan) fall in
7 When comparing models via AIC, it is important that you only compare models

that are flexible enough to fit the data. Fortunately, inadequate models will usually
have very high AICs and fall out of the mix.
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the north subpopulation and regions 3, 4 and 5 fall in the south subpopulation.
For this analysis, we will assume that these two subpopulations share their
growth parameter, u, and process variance, σ2, since they share a similar
environment and prey base. However we postulate that because of fidelity to
natal rookeries for breeding, animals do not move much year-to-year between
the north and south and the two subpopulations are independent.

We need to write the state-space model to reflect this population structure.
There are two subpopulations, xn and xs, and they have the same growth rate
u: [

xn,t

xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
en,t

es,t

]
(3.7)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process error) come from a multivariate normal
with no covariance:[

en,t

es,t

]
∼MVN

(
mean =

[
0
0

]
, varcov =

[
σ2 0
0 σ2

])
(3.8)

For the observation process, we use a matrix to associate the regions with
their respective xn and xs values:

y1,t

y2,t

y3,t

y4,t

y5,t

 =


A1

A2

A3

A4

A5

+


1 0
1 0
0 1
0 1
0 1


[
xn,t

xs,t

]
+


ε1,t

ε2,t

ε3,t

ε4,t

ε5,t

 (3.9)

3.4.1 Specifying the KalmanEM arguments for analysis 3

We need to change whichPop to specify that there are 2 subpopulations (north
and south), and that regions 1 and 2 are in the north subpopulation and
regions 3,4 and 5 are in the south subpopulation. We can write whichPop
either with numbers or strings:

whichPop = c("N","N","S","S","S")

whichPop = c(1,1,2,2,2)

We want to specify that the u’s are the same for each subpopulation and
that the σ2’s are the same. To do this, we pass the arguments U.groups and
Q.groups to KalmanEM. To specify that both our subpopulations share their
parameters, we set

U.groups = c(1,1)

Q.groups = c(1,1)

This says that there is 1 u and σ2 parameter and both subpopulations share
it (if we wanted the u’s to be different, we would use U.groups=c(1,2)).
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We also want to specify the the Q matrix is diagonal (no covariances).
This means that the subpopulations are temporally independent (good and
bad years aren’t correlated):

varcov.Q = "diagonal"

Now we fit this model to the data:

kem3 = KalmanEM(dat, whichPop=c(1,1,2,2,2), U.groups=c(1,1),

varcov.Q="diagonal", Q.groups=c(1,1), R.groups=c(1,1,1,1,1),

varcov.R="diagonal")

Model Structure is
m: 2 state process(es)
n: 5 observation time series
whichPop: Observation time series assigned to state processes as 1 1 2 2 2
U.groups: State process growth rates assigned to groups as 1 1
Q: Process errors are uncorrelated and have a diagonal var-cov matrix.
Q.groups: State process variances assigned to groups as 1 1
R: Observation errors are uncorrelated and have a diagonal var-cov matrix.
R.groups: Observation variances assigned to groups as 1 1 1 1 1
x00 is treated as fixed but unknown (estimated). V00=0 (but set larger for the EM algorithm. See help file).
Finished in 14 interations. Max.iter was 5000.

The output confirms the model structure and tells us how long it took to fit
the model. We estimated 2 initial x’s, 1 process variance, 1 U , 3 A’s, and 1
observation variance. So K = 8 parameters. The Kalman filter requires an
initial condition (t = 0) for each x time series. When m < n, the number of
A’s estimated is n−m since one of the A’s for each state process will be set
to 0. The AIC is 2*8 - 2*kem3$loglike.

As before, the parameter estimates and AIC can be output by typing in
kem3$U, kem3$Q, kem3$R, kem3$loglike, and kem3$AIC. Go ahead and use R
to output the parameter values and AICs. Then add the values to the table
at the back of this hand-out.

Fig. 3.4 shows the residuals for the 2 subpopulations case. The residuals
look better (more cloud-like) but the Hood Canal residuals are still temporally
correlated.

3.5 Analyses 4-7: other population and observation error
structures

Now work through a number of different structures and fill out the table
at the back of this worksheet. At the end you’ll see how your estimation of
the mean population growth rate varies under different assumptions about
the population and the data. All these analyses assume that the observation
variances are unique at each site.

Each call to the KalmanEM algorithm is the same:
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Fig. 3.4. The residuals for analysis 3. The plots of the residuals should not have
trends with time. Compare with the residuals for analysis 2.

kem = KalmanEM(dat, whichPop=Z, varcov.Q="diagonal",

varcov.R="diagonal", U.groups=U.groups, Q.groups=Q.groups,

R.groups=R.groups)

Analysis 4: There are five subpopulations, and each site is sampling one of
them. However, each subpopulation shares the same population parameters,
u and σ2. How to set the arguments for that case. The run the code above.
You’ll want to give the output a separate name, e.g. kem4=KalmanEM(....

Z=c(1,2,3,4,5)

U.groups=c(1,1,1,1,1)

Q.groups=c(1,1,1,1,1)

R.groups=c(1,2,3,4,5)

You can pass in R.groups=c(1,1,1,1,1) to make all the observation vari-
ances equal.

Analysis 5: The Strait of Juan de Fuca and San Juan Islands represent a
Northern Puget Sound subpopulation, while the other three are sampling from
a Southern Puget Sound subpopulation. But each site trajectory is allowed to
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have different population parameters, u and σ2. Write down the specification
for Z, U.groups, and Q.groups. If you get stuck (or want to check your work),
look in the R code for case study 2.

Analysis 6: Two subpopulations with different parameters, but the divi-
sions are Hood Canal versus everywhere else.

Analysis 7: Three subpopulations with different parameters, but the divi-
sions are North, South, Hood Canal.

Other things to try. You can set

varcov.Q = "unconstrained"

to allow the subpopulations to covary in time (i.e. not be temporally indepen-
dent). You will need to delete Q.groups from your KalmanEM call because you
can’t have shared values in Q and all values different at the same time.

You can also set

varcov.Q = "equalvarcov"

to make all the subpopulations covary in time but with equal covariances and
variances. Again remove Q.groups from your KalmanEM call if you use this
setting.

You can set

R.groups = c(1,1,2,2,2)

to make regions 1 and 2 share an observation variance and regions 3,4,5 share
a different observation variance.

3.6 Discussion

Case Study 2 shows you how to combine multiple datasets that are measuring
the same underlying process and fit those data using a multivariate state-space
framework. This allows you to combine data sets and use all the available data.
You can also combine data that are discontinuous; that is data that don’t
overlap in time. For example, if you have data from one type of monitoring
program in one set of years and then data from a different program starting
in some later years, you can still easily estimate the population dynamics
parameters using both sets of data.

There are a number of corners that we cut in order to have an example
that runs quickly for a workshop:

� We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since KalmanEM.r is a “hill-
climbing” algorithm, this ensures that it does not get stuck on a local
maxima. KalmanEM.r will do this for you if you pass it the argument
MonteCarloInit = TRUE.
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� We assume independent observation and process errors. Depending on your
system, observation errors may is driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad
for your analysis. The current KalmanEM code will not handle covariance
in R when there are missing data, but even it did, separating covariance
across observation versus process errors will require much data (to have
any power). In practice, the first step is to think hard about what drives
sightability for your species and what are the relative levels of process and
observation variance. You may be able to change your data in a way that
will make the observation errors independent–for example, using data from
different months or defining your “regions”

� We left the default tolerance, tol=0.01. You’ll want to set this lower, e.g.
tol=0.0001, for a real analysis. You’ll need to up the max.iter argument
correspondingly.

� We used the large-sample computation for AIC instead of an AIC that
is designed to correct for small sample size in state-space models. The
better metric, AICb, takes a long time to run. We could have shown AICc,
which is the small-sample size corrector for non-state-space models. Type
kem$AICc to get that.

Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models
in your analysis that have no biological basis. In practice, we spend a lot of
time discussing the population structure with biologists working on the species
and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that (given) structure
and all the data to get parameter estimates for forecasting (U , Q, R). Finally,
other times, one wants to have a measure of the support the observed data
give to all possible different population structures. That is a Bayesian question
(P (Θ|data)) and we would fit a model where Q is unconstrained and look at
the posterior distribution of the elements in Q.



3.6 Discussion 35

Results table

pop. growth process num. log-like
An. rate variance params kem$ AIC

kem$U kem$Q kem$K loglike kem$AIC
1 one population

different obs. vars
uncorrelated

2 one population
identical obs vars

uncorrelated
3 N+S subpops

identical obs vars
uncorrelated;

4 5 subpops
unique obs vars

u’s + σ2’s identical
5 N+S subpops

unique obs vars
u’s + σ2’s identical

6 PS + HC subpops
unique obs vars
u’s + σ2’s unique

7 N + S + HC subpops
unique obs vars
u’s + σ2’s unique

For AIC, only the relative differences matter. A difference of 10 between
two AIC means substantially more support for the model with lower AIC. A
difference of 30 or 40 between two AICs is very large.

Questions

1. Do different assumptions about whether the measurement error variances
are all identical versus different affect your estimate of the trend? You
may want to rerun cases 3-7 with the R.groups specification changed.
R.groups=c(1,2,3,4,5) means measurement variances all different ver-
sus R.groups=c(1,1,1,1,1).

2. Do assumptions about the underlying structure of the population affect
your estimates of trend? Structure here means number of subpopulations
and which areas are in which subpopulation. Try changing ‘state param-
eters differ’ to ‘state params identical’ for analyses 5-7.
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3. The CIs for the first two analyses are very tight because the estimate
process variance was very small, kem1$Q. Why do you think σ2 was forced
to be so small? [Hint: We are forcing there to be 1 and only 1 true process
and all the observation time series have to fit that one time series. Look
at the AICs too.]
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Case Study 3: Using MARSS models to
identify spatial population structure and
covariance

4.1 The problem

Some of our previous case studies this morning have utilized pieces of the
harbor seal (Phoca vitulina) dataset; in this example we use time series of
observations from 9 sites to examine spatial structure for the entire west coast
population of harbor seals (Jeffries et al., 2003).

Harbor seals are distributed along the west coast of the US. The pop-
ulations in Oregon and Washington have been surveyed for > 25 years at
a number of haul-out sites (Figure 4.1). In general, these populations have
been increasing steadily since the 1972 (Marine Mammal Protection Act).
It remains unknown whether they are at carrying capacity. For management
purposes, 2 stocks are recognized; the coastal stock consists of 4 sites (North-
ern/Southern Oregon, Coastal Estuaries, Olympic Peninsula), and the inland
WA stock consists of the remaining 5 sites (Figure 4.1). Subtle differences
exist in the demographics across sites (e.g. pupping dates), however mtDNA
analyses and tagging studies have suggested that these sites may be struc-
tured on a much larger scale. Harbor seals are known for strong site fidelity,
but at the same time travel large distances to forage. Our goal for this case
study is to address the following questions about spatial structure: 1) Does
population abundance data support the existing management boundaries, or
are there alternative groupings that receive more support? and 2) Does the
Hood Canal site represent a distinct subpopulation?

4.2 Analysis for question 1: how many distinct
subpopulations?

For this analysis, we will analyze the support for five hypotheses about the
population structure. These do not represent all possible structures but in-
stead represent those that are considered most biologically plausible given the
geography and the behavior of harbor seals.



38 4 CS3: Using MARSS models to identify spatial population structure and covariance
Figure 01.  Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.   
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Fig. 4.1. Map of spatial distribution of 9 harbor seal sites in Washington and
Oregon.

Hypothesis 1 Sites are grouped by stock (m = 2), unique process errors
Hypothesis 2 Sites are grouped by stock (m = 2), same process error
Hypothesis 3 Sites are grouped by state (m = 2), unique process errors
Hypothesis 4 Sites are grouped by state (m = 2), same process error
Hypothesis 5 All sites are part of the same panmictic population (m = 1)

Aerial survey methodology has been relatively constant across time and
space, and we will assume that all sites have the same constant (and indepen-
dent) observation error variance for all sites.

4.2.1 Specify the design, Z, matrices

Write down the Z matrices for the hypotheses. Hint: Hypothesis 1 and 2
have the same Z matrix, Hypothesis 3 and 4 have the same Z matrix and
Hypothesis 5 is a column of 1s.
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Hypothesis 1 and 2 Hypothesis 3 and 4 Hypothesis 5
Z Z Z

subpop subpop subpop subpop subpop
1 2 1 2 1

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast













Next you need to specify whichPop so that KalmanEM knows the structure
of your Z’s.

� Hypothesis 1 and 2: whichPop=
� Hypothesis 3 and 4: whichPop=
� Hypothesis 5: whichPop=

4.2.2 Specify the grouping arguments

For this case study, we will assume that subpopulations share the same
growth rate. What should U.groups look like for each hypothesis? Recall
that U.groups is length m and specifies which subpopulations share their u
parameter. Written in R it takes the form c(#,#,...)

� Hypothesis 1-4: U.groups=
� Hypothesis 5: U.groups=

What about Q.groups? Q.groups is also length m and specifies which
subpopulations share their process variance parameter. To specify Q.groups,
look at each hypothesis (above).

� Hypothesis 1: Q.groups=
� Hypothesis 2: Q.groups=
� Hypothesis 3: Q.groups=
� Hypothesis 4: Q.groups=
� Hypothesis 5: Q.groups=

Lastly, specify R.groups. As we mentioned above, we will assume that the
observation variance is the same across sites. R.groups is length n.

� Hypothesis 1-5: R.groups=
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4.2.3 Fit models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to KalmanEM will
look like

kem = KalmanEM(sealData, varcov.Q = "diagonal", varcov.R = "di-
agonal", whichPop = whichPop, U.groups = U.groups, Q.groups = Q.groups,
R.groups = R.groups)

We set both varcov.Q and varcov.R to diagonal so that there is no
covariance between process errors and between measurement errors.

Fill in the following table, by fitting the five state-space models – that
you have defined for the five hypotheses – to the harbor seal data (using
KalmanEM). Use the Case_Study_3.r script so you don’t have to type in all
the commands.

pop. growth process obs. num. log-
H rate variance variance params like. AIC

kem$U kem$Q kem$R kem$K kem$loglike kem$AIC

1

2

3

4

5

4.2.4 Interpret results for question 1

What do these results indicate about the process error grouping, and spatial
grouping? A lower AIC means a more parsimonious model (highest likelihood
given the number of parameters). A difference of 10 between AICs is large, and
means the model with the higher AIC is unsupported relative to the model
with lower AIC.
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Extra analysis (if you have time): Do your results change if you assume
that observation errors are independent but have unique variances? The 9
sites have different numbers of haul-outs and so the observation variances
might be different. Repeat the analysis with unique observation variances
for each site (this means changing R.groups). You can also try the analysis
with temporally co-varying subpopulations (good and bad years correlated)
by setting varcov.Q="unconstrained".

4.3 Analysis for question 2: Is Hood Canal separate?

The Hood Canal site may represent a distinct population, and has recently
been subjected to a number of catastrophic events (hypoxic events, possibly
leading to reduced prey availability, and several killer whale predation events,
removing up to 50% of animals per occurrence). Build four models, assuming
that each site (other than Hood Canal) is assigned to its current management
stock, but Hood Canal is allowed to be a different subpopulation (m = 3).
Again, assume observation error is independent and constant across sites.

Hypothesis 1 Subpopulations have a shared process error and shared growth
rate

Hypothesis 2 Each subpopulation has a unique process error and growth rate
Hypothesis 3 Hood Canal has the same process error, but different growth

rate
Hypothesis 4 Hood Canal has unique process error and unique growth rate

4.3.1 Specify the Z matrix and whichPop

The Z matrix for each hypothesis is the same. The coastal subpopulation
consists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), the Hood Canal subpopulation is the Hood Canal site, and the
inland WA subpopulation consists of the remaining 4 sites. Thus m = 3 and
Z is a 9× 3 matrix:

subpop subpop subpop
1 2 3

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast
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Then write down whichPop for this Z.

4.3.2 Specify which parameters are shared across which
subpopulations

U.groups specifies which u are shared across subpopulations. Look at the
hypothesis descriptions above which will specify whether subpopulations share
their population growth rate or have unique population growth rates.

� Hypothesis 1: U.groups=
� Hypothesis 2: U.groups=
� Hypothesis 3: U.groups=
� Hypothesis 4: U.groups=

Once you have more than 2 subpopulations, it can get hard to keep straight
which U.groups= number goes to which subpopulation. It is best to sketch
your Z matrix (which tells you which site in the rows corresponds to which
subpopulation in the columns). Then remember that the elements of U.groups
correspond 1 to 1 with the columns of Z:

U.groups=c(col 1 Z, col 2 Z, col 3 Z, ..).
Specify Q.groups showing which subpopulations share their process vari-

ance parameter.

� Hypothesis 1: Q.groups=
� Hypothesis 2: Q.groups=
� Hypothesis 3: Q.groups=
� Hypothesis 4: Q.groups=

R.groups is the same as for Question 1; the observation variances are the
same for each site.

4.3.3 Fit the models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to KalmanEM will
look like

kem = KalmanEM(sealData, varcov.Q = "diagonal", varcov.R = "di-
agonal", whichPop = whichPop, U.groups = U.groups, Q.groups = Q.groups,
R.groups = R.groups)
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pop. growth num. log-like
H rate proc. variance obs. variance params kem$ AIC

kem$U kem$Q kem$R kem$K loglike kem$AIC

1

2

3

4

4.3.4 Interpret results for question 2

How do the residuals for the Hood Canal site compare from these models
relative to the best model from Question 1? Hint: If you have the vector of
estimated population states (Xpred = t(kem$states)) and the data (Xobs =
sealData), the residuals for site i can be plotted in R as:

Xpred = t(kem$states)

Xobs = sealData

plot(Xpred[, whichPop[i]] - Xobs[,i],ylab="Predicted-Observed Data")

In R, if you have a matrix Y[1:numYrs, 1:n], you can extract column j by
writing Yj = Y[ , j].

Relative to the previous models from Question 1, do these scenarios have
better or worse AIC scores (smaller AIC is better)? If you were to provide
advice to managers, would you recommend that the Hood Canal population is
a source or sink? What implications does this have for population persistence?
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Case Study 5: Using state-space models to
analyze noisy animal tracking data

5.1 Background: a simple random walk model of animal
movement

A simple random walk model of movement with drift but no correlation is

x1,t = x1,t−1 + u1 + e1,t, e1,t ∼ Normal(0, σ2
1) (5.1)

x2,t = x2,t−1 + u2 + e2,t, e2,t ∼ Normal(0, σ2
2)

where x1,t is the location at time t along one axis (in our case study, longitude)
and x2,t is for another, generally orthogonal, axis (in our case study, latitude).
We add measurement errors to our observations of location:

y1,t = x1,t + a1 + ε1,t, ε1,t ∼ Normal(0, η2
1) (5.2)

y2,t = x2,t + a2 + ε2,t, ε2,t ∼ Normal(0, η2
2),

Together Equations 5.2 and 5.3 are an MSSM (now written in matrix
form):

Xt = Xt−1 + U + Et, Et ∼MVN(0,Q) (5.3)
Yt = Xt + A + ηt, ηt ∼MVN(0,R). (5.4)

5.2 The problem

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. However, we have a “Bad Tag” problem. Our
latitude and longitude data has been corrupted by errors (Figure 5.1) and it
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would appear that our sea turtles are becoming land turtles (at least part of
the time).

For this case study, we will use KalmanEM to estimate true positions and
speeds from the corrupted data. We will a couple extra package to plot and
analyze the results: the maps and mvtnorm packages. If you have not already,
install these packages by selecting the ‘Packages’ menu and then ‘Install pack-
ages’ and then select the two packages. If you are on a Mac, remember to
select “binaries” for the package type.
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Fig. 5.1. Plot of the of the tag data from the turtle Big Mama. Errors in the location
data make it seem that Big Mama has been moving overland.

5.3 Using the Kalman-EM algorithm to estimate
locations from bad tag data

5.3.1 Read in the data and load maps packages

Our noisy data are in the file loggerhead_noisy.csv. They consist of daily
readings of location (longitude/latitude).
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loggerhead = read.csv("loggerhead_noisy.csv",header=T) # read in the data

The data are recorded daily and KalmanEM requires an entry for each day. The
data look like so

loggerhead[1:6,]

turtle month day year lon lat
1 BigMama 5 28 2001 -81.45989 31.70337
2 BigMama 5 29 2001 -80.88292 32.18865
3 BigMama 5 30 2001 -81.27393 31.67568
4 BigMama 5 31 2001 -81.59317 31.83092
5 BigMama 6 1 2001 -81.35969 32.12685
6 BigMama 6 2 2001 -81.15644 31.89568

And the file has data for 8 turtles:

levels(loggerhead$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"

We will first analyze the position data for “Big Mama”. We put the data for
“Big Mama” into variable dat:

turtlename="BigMama"

dat = loggerhead[which(loggerhead$turtle==turtlename),5:6]

5.3.2 Use KalmanEM to estimate the position of Big Mama

We will begin specifying the structure of the MARSS model used for animal
movement and then use KalmanEM to fit that model to the data for each
individual. There are two state processes (one for latitude and the other for
longitude). There is one observation time series for each so

whichPop=c(1,2)

We’ll assume that the errors are independent (you can try something different
if you want) and that there are different drift rates, process variances and mea-
surement variances for latitude and longitude (again you can try something
different):

varcov.Q="diagonal"

varcov.R="diagonal"

Q.groups=c(1,2) # separate process errors to do scale diffs

R.groups=c(1,2) # separate measurement errors

U.groups=c(1,2) # separate directional drifts

Fit the model to the data:

kem = KalmanEM(dat, varcov.Q=varcov.Q, varcov.R=varcov.R,

whichPop=whichPop, U.groups=U.groups, Q.groups=Q.groups,

R.groups=R.groups, max.iter=10000, silent=T)
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5.3.3 Compare KalmanEM estimates to the real positions

The real locations (from which loggerhead_noisy.csv was produced by
adding noise) are in loggerhead.csv. In Figure 5.2, we compare the tracks
estimated from the noisy data with the original, good, data (see the R script,
Case_Study_5.r for the code to make this plot. There are only a few data
points for the real data because the real tag data has lots of missing days.
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Fig. 5.2. Plot of the estimated track of the turtle Big Mama versus the good location
data (before we corrupted it with noise).

5.3.4 Estimate speeds for each turtle

Turtle biologists designated one of these loggerheads“Big Mama,”presumably
for her size and speed. For each of the 8 turtles, estimate the average miles
traveled per day. To calculate the distance traveled by a turtle each day, you
use the estimate (from KalmanEM) of the lat/lon location of turtle at day t
and at day t − 1. To calculate distance traveled in miles from lat/lon start
and finish locations, we will use the function GCDF defined at the beginning
of the R script, Case_Study_5.r):
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distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],pred.lat[i-1],pred.lat[i])

pred.lon and pred.lat are the predicted longitudes and latitudes from
KalmanEM. To calculate the distances for all days, we put this through a for
loop:

distance = array(-99, dim=c(dim(dat)[1]-1,1))

for(i in 2:dim(dat)[1])

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],pred.lat[i-1],pred.lat[i])

Take the mean (mean(distance) to get the average distance per day. We
can also make a histogram of the distances traveled per day:

par(mfrow=c(1,1))

hist(distance) #make a histogram of distance traveled per day
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Fig. 5.3. Histogram of the miles traveled per day for Big Mama.

Compare this to the estimate of miles traveled per day if you had not
accounted for measurement errors (using the Kalman-EM algorithm). See the
script file, Case_Study_5.r, for the code.
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Turtle Estimated Speed

Big Mama

Bruiser

Humpty

Isabelle

Johanna

Mary Lee

TBA

Yoto

If you were given the opportunity to race these turtles, would you bet on
Big Mama being the fastest?

5.4 Comparing turtle tracks to proposed fishing areas

One of the greatest threats to the long term viability of loggerhead turtles is
incidental take by net/pot fisheries. After returning from ESA this year, you
rave to your advisor/boss about how great state space models are. A week
later, she promptly volunteers you to serve on a review team, providing advice
to sea turtle managers about the potential impact of two potential new fishery
areas on sea turtle bycatch. To add the fishing areas, to your turtle plots:

# the proposed fishery areas

lines(c(-77,-78,-78,-77,-77),

c(33.5,33.5,32.5,32.5,33.5),col="red",lwd=2)

lines(c(-75,-76,-76,-75,-75),

c(38,38,37,37,38),col="red",lwd=2)

Given that only one area can be chosen as a future fishery, what do your
predicted movement trajectories for our 8 turtles tell you?

5.5 Using fields to get density plots of locations

If you are comfortable programming in R, load the fields package. Make 3D
density plots of predicted sea turtle locations. Which two areas appear to be
most visited?
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Include the confidence interval estimates for each location in this analysis.
For this part of the exercise, we will assume that the confidence intervals
are roughly the same as the probability intervals (Bayesian). We can assume
that the error in latitude is independent from error in longitude. The fields
package includes a couple different functions. One that might be useful here
is Tps(), like in the example (?fields). To call fields, we need predictor
variables (X), which can be random lon/lat pairs randomly drawn within the
range of the data. The other requirement for Tps() is the response, y. If we
think of each predicted state being a bivariate normal density, the response
for each of our random pairs can be the density across all of the predicted
states. There is code to help you get started in the R file.

5.6 Using specialized packages to analyze tag data

If you have tag data to analyze, you should use a state-space modeling package
that has all the bells and whistles for that kind of data. There a number of R
packages available for this. These are a couple we have come across:

UKFSST http://www.soest.hawaii.edu/tag-data/tracking/ukfsst/
KFTRACK http://www.soest.hawaii.edu/tag-data/tracking/kftrack/

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e. days with no location. KalmanEM will struggle
with these data because it will estimate states for all the unseen days; kftrack
only fits to the seen days.

To use kftrack to fit the turtle data, type

library(kftrack) # must be installed from local zip

loggerhead = read.csv("loggerhead.csv",header=T)

# Run kftrack with the first turtle (BigMama)

turtlename = "BigMama"

model = kftrack(loggerhead[ which(loggerhead$turtle == turtlename), 2:6],

fix.first=F, fix.last=F, var.struct="uniform")

To look at what the kftrack model consists of, type

model
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Code

The code in the function KalmanEM() was written by Elizabeth Holmes and
Eric Ward, who are research scientists with the Northwest Fisheries Science
Center, part of NOAA Fisheries. You are welcome to use the code and adapt
it with attribution. It may not be used in any commercial applications. This
code is an amalgamation of a series of functions in an R package we are de-
veloping for fitting state-space models via maximum-likelihood and Bayesian
approaches. Links to lots more code can be found by following the links at E.
Holmes’ website http://faculty.washington.edu/eeholmes Links to our papers
that use these methods can also be found at the same website. The func-
tion TMUfigure is based on code by Steve Ellner and Elizabeth Holmes. The
function riskfigure was written by Elizabeth Holmes.
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Textbooks and articles that use state-space
modeling

Textbooks Describing the Estimation of Process and
Non-process Variance

There are many textbooks on Kalman filtering and estimation of state-space
models. The following are a sample of books that are probably more accessible
for those interested in population modeling.

Shumway, R. H., and D. S. Stoffer. 2000. Time series analysis and its
applications. Springer-Verlag, New York, New York, USA.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Durbin, J., and S. J. Koopman. 2001. Time series analysis by state space
methods. Oxford University Press, Oxford.

King, R., G. Olivier, B. Morgan, and S. Brooks. 2009. Bayesian Analysis
for Population Ecology.

Giovanni, P., S. Petrone, and P. Campagnoli. 2009. Dynamic Linear Models
in R.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian Forecasting
and Time Series Analysis.

Bolker, B. 2008. Ecological Models and Data in R. Last chapters.

Maximum-likelihood papers

This is just a sample of the papers from the population modeling literature.

de Valpine, P. 2002. Review of methods for fitting time-series models with
process and observation error and likelihood calculations for nonlinear, non-
Gaussian state-space models. Bulletin of Marine Science 70:455-471.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorpo-
rating process noise and observation error. Ecological Monographs 72:57-76.



56 7 Textbooks and articles that use state-space modeling

de Valpine, P. 2003. Better inferences from population-dynamics exper-
iments using Monte Carlo state-space likelihood methods. Ecology 84:3064-
3077.

de Valpine, P. and R. Hilborn. 2005. State-space likelihoods for nonlin-
ear fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences
62:1937-1952.

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006.
Estimating density dependence, process noise, and observation error. Ecolog-
ical Monographs 76:323-341.

Ellner, S.P. and E.E. Holmes. 2008. Resolving the debate on when extinc-
tion risk is predictable. Ecology Letters 11:E1-E5.

Hinrichsen, R.A. and E.E. Holmes. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In Spatial Ecology (editors
Robert Stephen Cantrell, Chris Cosner, Shigui Ruan). CRC/Chapman Hall.

Hinrichsen, R.A. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197-1202.

Holmes, E.E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072-5077.

Holmes, E.E. and W.F. Fagan. 2002. Validating population viability anal-
ysis for corrupted data sets. Ecology 83:2379-2386.

Holmes, E.E. 2004. Beyond theory to application and evaluation: diffu-
sion approximations for population viability analysis. Ecological Applications
14:1272-1293.

Holmes, E.E., W.F. Fagan, J.J. Rango, A. Folarin, S.J.A., J.E. Lippe, and
N.E. McIntyre. 2005. Cross validation of quasi-extinction risks from real time
series: An examination of diffusion approximation methods. U.S. Department
of Commerce, NOAA Tech. Memo. NMFS-NWFSC-67, Washington, DC.

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical
approach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

Kalman, R.E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35-45.

Lele, S.R. 2006. Sampling variability and estimates of density dependence:
a composite likelihood approach. Ecology 87:189-202.

Lele, S.R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian Markov
chain Monte Carlo methods. Ecology Letters 10:551-563.

Lindley, S.T. 2003. Estimation of population growth and extinction pa-
rameters from noisy data. Ecological Applications 13:806-813.

Ponciano, J.M., M.L. Taper, B. Dennis, S.R. Lele. 2009. Hierarchical mod-
els in ecology: confidence intervals, hypothesis testing, and model selection
using data cloning. Ecology 90:356-362.

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population
trend and process variation for PVA in the presence of sampling error. Ecology
85:923-929.



7 Textbooks and articles that use state-space modeling 57

Bayesian papers

This is a sample of the papers from the population modeling and animal
tracking literature.

Buckland, S.T., K.B. Newman, L. Thomas and N.B. Koestersa. 2004.
State-space models for the dynamics of wild animal populations. Ecological
modeling 171:157-175.

Calder, C., M. Lavine, P. Müller, J.S. Clark. 2003. Incorporating multiple
sources of stochasticity into dynamic population models. Ecology 84:1395-
1402.

Chaloupka, M. and G. Balazs. 2007. Using Bayesian state-space modelling
to assess the recovery and harvest potential of the Hawaiian green sea turtle
stock. Ecological Modelling 205:93-109.

Clark, J.S. and O.N. Bjørnstad. 2004. Population time series: process vari-
ability, observation errors, missing values, lags, and hidden states. Ecology
85:3140-3150.

Jonsen, I.D., R.A. Myers, and J.M. Flemming. 2003. Meta-analysis of an-
imal movement using state space models. Ecology 84:3055-3063.

Jonsen, I.D, J.M. Flemming, and R.A. Myers. 2005. Robust state-space
modeling of animal movement data. Ecology 86:2874-2880.

Meyer, R. and R.B. Millar. 1999. BUGS in Bayesian stock assessments.
Can. J. Fish. Aquat. Sci. 56:1078-1087.

Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state-
space implementation of the delay difference model. Can. J. Fish. Aquat. Sci.
56:37-52.

Meyer, R. and R.B. Millar. 2000. Bayesian state-space modeling of age-
structured data: fitting a model is just the beginning. Can. J. Fish. Aquat.
Sci. 57:43-50.

Newman, K.B., S.T. Buckland, S.T. Lindley, L. Thomas, and C. Fernán-
dez. 2006. Hidden process models for animal population dynamics. Ecological
Applications 16:74-86.

Newman, K.B., C. Fernández, L. Thomas, and S.T. Buckland. 2009. Monte
Carlo inference for state-space models of wild animal populations. Biometrics
65:572-583

Rivot, E., E. Prévost, E. Parent, and J.L. Baglinière. 2004. A Bayesian
state-space modelling framework for fitting a salmon stage-structured popu-
lation dynamic model to multiple time series of field data. Ecological Modeling
179:463-485.

Schnute, J.T. 1994. A general framework for developing sequential fisheries
models. Canadian J. Fisheries and Aquatic Sciences 51:1676-1688.

Swain, D.P., I.D. Jonsen, J.E. Simon, and R.A. Myers. 2009. Assessing
threats to species at risk using stage-structured state-space models: mortality
trends in skate populations. Ecological Applications 19:1347-1364.
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Thogmartin, W.E., J.R. Sauer, and M.G. Knutson. 2004. A hierarchical
spatial model of avian abundance with application to cerulean warblers. Eco-
logical Applications 14:1766-1779.

Trenkel, V.M., D.A. Elston, and S.T. Buckland. 2000. Fitting population
dynamics models to count and cull data using sequential importance sampling.
J. Am. Stat. Assoc. 95:363-374.

Viljugrein, H., N.C. Stenseth, G.W. Smith, and G.H. Steinbakk. 2005.
Density dependence in North American ducks. Ecology 86:245-254.

Ward, E.J., R. Hilborn, R.G. Towell, and L. Gerber. 2007. A state-space
mixture approach for estimating catastrophic events in time series data. Can.
J. Fish. Aquat. Sci., Can. J. Fish. Aquat. Sci. 644:899-910.

Wikle, C.K., L.M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian
space-time models. Journal of Environmental and Ecological Statistics 5:117-
154

Wikle, C.K. 2003. Hierarchical Bayesian models for predicting the spread
of ecological processes. Ecology 84:1382-1394.



References

Dennis, B., Munholland, P. L., and Scott, J. M. (1991). Estimation of growth
and extinction parameters for endangered species. Ecological Monographs,
61:115–143.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples, D. F.
(2006). Estimating density dependence, process noise, and observation er-
ror. Ecological Monographs, 76(3):323–341.

Ellner, S. P. and Holmes, E. E. (2008). Resolving the debate on when extinc-
tion risk is predictable. Ecology Letters, 11:E1–E5.

Gerber, L. R., Master, D. P. D., and Kareiva, P. M. (1999). Grey whales and
the value of monitoring data in implementing the u.s. endangered species
act. Conservation Biology, 13:1215âĂŞ1219.
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